pvlib.iotools.get_meteonorm_observation_training#
- pvlib.iotools.get_meteonorm_observation_training(latitude, longitude, start, end, api_key, parameters='all', *, surface_tilt=0, surface_azimuth=180, time_step='15min', horizon='auto', interval_index=False, map_variables=True, url='https://api.meteonorm.com/v1/')[source]#
- Retrieve historical observational data from Meteonorm. - The Meteonorm data options are described in [1] and the API is described in [2]. A detailed list of API options can be found in [3]. - Parameters:
- latitude (float) – In decimal degrees, north is positive (ISO 19115). 
- longitude (float) – In decimal degrees, east is positive (ISO 19115). 
- start (datetime like) – First timestamp of the requested period. If a timezone is not specified, UTC is assumed. 
- end (datetime like) – Last timestamp of the requested period. If a timezone is not specified, UTC is assumed. 
- api_key (str) – Meteonorm API key. 
- parameters (list or 'all', default : 'all') – List of parameters to request or ‘all’ to get all parameters. 
- surface_tilt (float, default : 0) – Tilt angle from horizontal plane. 
- surface_azimuth (float, default : 180) – Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270). 
- time_step ({'1min', '15min', '1h'}, default : '15min') – Frequency of the time series. 
- horizon (str or list, default : 'auto') – Specification of the horizon line. Can be either ‘flat’, ‘auto’, or a list of 360 integer horizon elevation angles. 
- interval_index (bool, default : False) – Index is pd.DatetimeIndex when False, and pd.IntervalIndex when True. This is an experimental feature which may be removed without warning. 
- map_variables (bool, default : True) – When true, renames columns of the Dataframe to pvlib variable names where applicable. See variable - VARIABLE_MAP.
- url (str, optional) – Base URL of the Meteonorm API. The default is - pvlib.iotools.meteonorm.URL.
 
- Raises:
- requests.HTTPError – Raises an error when an incorrect request is made. 
- Returns:
- data (pd.DataFrame) – Time series data. The index corresponds to the middle of the interval unless - interval_indexis set to True.
- meta (dict) – Metadata. 
 
 - Examples - >>> # Retrieve historical time series data >>> df, meta = pvlib.iotools.get_meteonorm_observation_training( ... latitude=50, longitude=10, ... start='2023-01-01', end='2025-01-01', ... api_key='redacted') - See also - pvlib.iotools.get_meteonorm_forecast_basic,- pvlib.iotools.get_meteonorm_forecast_precision,- pvlib.iotools.get_meteonorm_observation_realtime,- pvlib.iotools.get_meteonorm_tmy- References 
